Complex Numbers

Questions

Q1.

(i) The complex number *w* is given by

$$w = \frac{p - 4i}{2 - 3i}$$

where *p* is a real constant.

(a) Express *w* in the form a + bi, where *a* and *b* are real constants. Give your answer in its simplest form in terms of *p*.

(3) Given that arg $w = \frac{\pi}{4}$ (b) find the value of *p*.

(ii) The complex number *z* is given by

$$z = (1 - \lambda i)(4 + 3i)$$

where λ is a real constant. Given that

$$|z| = 45$$

find the possible values of λ

Give your answers as exact values in their simplest form.

(3)

(2)

(Total for question = 8 marks)

Q2.

Given that 4 and 2i - 3 are roots of the equation

$$x^3 + ax^2 + bx - 52 = 0$$

where *a* and *b* are real constants,

(a) write down the third root of the equation,

(1)

(b) find the value of *a* and the value of *b*.

(5)

(Total for question = 6 marks)

Q3.

$$f(z) = z^4 - 6z^3 + pz^2 + qz + r$$

where p, q and r are real constants.

The roots of the equation
$$f(z) = 0$$
 are α , β , γ and δ where $\alpha = 3$ and $\beta = 2 + i$

Given that γ is a complex root of f(z) = 0

 (a) (i) write down the root γ, (ii) explain why δ must be real. 	(0)
(b) Determine the value of δ .	(∠)
(c) Hence determine the values of $p_{1} q$ and r_{2}	(2)
	(3)
(d) Write down the roots of the equation $f(-2z) = 0$	(2)

(Total for question = 9 marks)

Q4.

Given that z = a + bi is a complex number where *a* and *b* are real constants,

(a) show that zz^* is a real number.

Given that

• $zz^* = 18$ • $\frac{z}{z^*} = \frac{7}{9} + \frac{4\sqrt{2}}{9}i$

(b) determine the possible complex numbers z

(5)

(2)

(Total for question = 7 marks)

Q5.

Let

$$f(z) = z^3 - 8z^2 + \rho z - 24$$

where *p* is a real constant. Given that the equation f(z) = 0 has distinct roots

$$\alpha, \beta$$
 and $\left(\alpha + \frac{12}{\alpha} - \beta\right)$

(a) solve completely the equation f(z) = 0

(b) Hence find the value of *p*.

(6)

(2)

(Total for question = 8 marks)

Q6.

Let

$$f(z) = z^3 + pz^2 + qz - 15$$

where p and q are real constants. Given that the equation f(z) = 0 has roots

$$\alpha, \frac{5}{\alpha} \text{ and } \left(\alpha + \frac{5}{\alpha} - 1\right)$$

(a) solve completely the equation f(z) = 0

(b) Hence find the value of *p*.

(5) (2)

(Total for question = 7 marks)

Q7.

Let

$$z = \frac{4}{1+i}$$

Find, in the form a + ib where $a, b \in \mathbb{R}$ (a) z

(2) (b)
$$z^2$$

(2) Given that z is a complex root of the quadratic equation $x^2 + px + q = 0$, where p and q are real integers,(c) find the value of *p* and the value of *q*.

(3)

(Total for question = 7 marks)

Mark Scheme – Complex Numbers

Q1.

Question	Scheme	Ma	rks
Number	Mark (i)(a) and (i)(b) together		
(1)	$n-4i$ π		
	$w = \frac{p}{2-3i}$ arg $w = \frac{\pi}{4}$		
(a)	(p-4i) (2+3i) (2+3i)	M1	
Way 1	$w = \frac{1}{(2-3i)} \times \frac{1}{(2+3i)}$ Multiplies by $\frac{1}{(2+3i)}$		
	$= \left(\frac{2p+12}{13}\right) + \left(\frac{3p-8}{13}\right)i$ At least one of either the real or imaginary part of w is correct. Must be expanded but could be unsimplified e.g. expressed as	A1	
	single fraction. Condone $a+ib$.		
	Correct w in its simplest form.	A1	
(a)	(a+ib)(2-3i) = (p-4i)		[3]
Way 2			
	2a+3b = p 3a-2b = 4 Multiplies out to obtain 2 equations in two unknowns.	M1	
	$= \left(\frac{2p+12}{13}\right) + \left(\frac{3p-8}{13}\right)i$ At least one of either the real or imaginary part of w is correct. Must be expanded but could be unsimplified e.g. expressed as single fraction. Condense $a+ib$	A1	
	Correct w in its simplest form.	A1	
202220	4944 C. S. 2010 8 102		[3]
(b)	$\left\{\arg w = \frac{\pi}{4} \Rightarrow \right\} 2p + 12 = 3p - 8 \text{ o.e. seen anywhere.} \qquad \qquad \begin{array}{l} \text{Sets the numerators of the} \\ \text{real part of their } w \text{ equal to} \\ \text{the imaginary part of their } w \\ \text{or if arctan used, require} \end{array} \right.$	M1	5666CB)
	evidence of $\tan \frac{\pi}{4} = 1$		
	$\Rightarrow p = 20 \qquad \qquad p = 20$	A1	[2]
(ii)	$z = (1 - \lambda i)(4 + 3i)$ and $ z = 45$		[4]
Way 1	$\sqrt{1+\lambda^2} \sqrt{4^2+3^2}$ Attempts to apply $\left (1-\lambda i)(4+3i)\right = \sqrt{1+\lambda^2} \sqrt{4^2+3^2}$	M1	
	$\sqrt{1+\lambda^2}\sqrt{4^2+3^2} = 45$ Correct equation.	A1	
	$\{\lambda^2 = 9^2 - 1 \Rightarrow\} \ \lambda = \pm 4\sqrt{5} \qquad \qquad \lambda = \pm 4\sqrt{5}$	A1	
			[3]
Way 2	$z = (4 + 3\lambda) + (3 - 4\lambda)i$ Attempt to multiply out, group real and	M1	121
	$\sqrt{(4+3\lambda)^2+(3-4\lambda)^2}$ imaginary parts and apply the modulus.		
	$(4+3\lambda)^2 + (3-4\lambda)^2 = 45^2$ or Correct equation.	A1	
	$\sqrt{(4+3\lambda)^2+(3-4\lambda)^2}=45$		
	$\{16 + 24\lambda + 9\lambda^2 + 9 - 24\lambda + 16\lambda^2 = 2025\}$ Condone if middle terms in expansions not ambigut stated		
	$(25)^2 - 2000 \rightarrow (2 - \pm 4)\sqrt{5}$	A1	
	$\chi^{25/2} = 2000 \Rightarrow \chi^{-1} = 1400$	051636	[2]
			[3] 8
	Question Notes	13 17	
(ii)	M1 Also allow $(1 + \lambda^2)(4^2 + 3^2)$ for M1.		
	M1 Also allow $(4 + 3\lambda)^2 + (3 - 4\lambda)^2$ for M1.		

Q2.	
-----	--

Question Number	Scheme		Marks
	$x^3 + ax^2 + bx - 52 = 0$, $a, b \in \mathbb{R}$, 4 and 2i - 3 are	roots	
(a)	-2i-3	-2i-3 seen anywhere in solution for Q6.	B1
(b) Way 1	$(x-(2i-3))(x-"(-2i-3)"); = x^2+6x+13 \text{ or}$ $x = -3 \pm 2i \Rightarrow (x+3)^2 = -4; = x^2+6x+13(=0)$ $(x-4)(x-(2i-3)); = x^2-(1+2i)x+4(2i-3)$ $(x-4)(x-"(-2i-3)"); = x^2-(1-2i)x+4(-2i-3)$	Must follow from their part (a). Any incorrect signs for their part (a) in initial statement award M0; accept any equivalent expanded expression for A1.	M1; A1
	$(x-4)(x^2+6x+13)$ {= $x^3+ax^2+bx-52$ }	$(x-3^{rd} root)$ (their quadratic).	M1
	$a=2, b=-11$ or $x^3+2x^2-11x-52$	Could be found by comparing coefficients from long division. At least one of $a=2$ or $b=-11$ Both $a=2$ and $b=-11$	A1 A1
(b)	Sum = (2i-3) + "(-2i-3)" = -6	Attempts to apply either	M1
Way 2	Product = $(2i-3) \times (-2i-3) = 13$	$x^2 - (\text{sum roots})x + (\text{product roots}) = 0$	
	So quadratic is $x^2 + 6x + 13$	or $x^2 - 2\operatorname{Re}(\alpha)x + \alpha^2 = 0$	
		$x^2 + 6x + 13$	A1
	$(x-4)(x^2+6x+13) = x^3+ax^2+bx-52$	$(x-3^{rd} root)$ (their quadratic)	M1
	$a=2, b=-11 \text{ or } x^3+2x^2-11x-52$	At least one of $a=2$ or $b=-11$	A1
		Both $a = 2$ and $b = -11$	A1
		Constanting of the State of the	[5]

(b)	$(2i-3)^3 + a(2i-3)^2 + b(2i-3) - 52 = 0$		
Way 3	5a-3b = 43 (real parts) and $6a-b = 23$ (imaginary parts) or uses $f(4) = 0$ and $f(a complex root) = 0$ to form equations in a and b .	Substitutes $2i-3$ into the displayed equation and equates both real and imaginary parts. 5a-3b=43 and $6a-b=23$ or 16a+4b=-12 and $(2i-3)^3+a(2i-3)^2+b(2i-3)-52=0/$	M1 A1
	So $a = 2, b = -11$ or $x^3 + 2x^2 - 11x - 52$	$(-2i-3)^3 + a(-2i-3)^2 + b(-2i-3) - 52 = 0$ Solves these equations simultaneously to find at least one of either $a =$ or $b =$ At least one of $a = 2$ or $b = -11$ Both $a = 2$ and $b = -11$	M1 A1
		Both $a = 2$ and $b = -11$	AI
(b) Way 4	b = sum of product pairs	Attempts sum of product pairs.	M1
way 4	=4(2i-3)+4"(-2i-3)"+(2i-3)"(-2i-3)"	All pairs correct o e	A1
	a = -(sum of 3 roots) = -(4 + 2i - 3'' - 2i - 3'')	Adds up all 3 roots	M1
	$a = 2, b = -11$ or $x^3 + 2x^2 - 11x - 52$	At least one of $a = 2$ or $b = -11$	A1
	800	Both $a = 2$ and $b = -11$	A1
			[5]
(b) Way 5	Uses $f(4) = 0$		M1
	16a + 4b = -12		A1
	a = -(sum of 3 roots) = -(4 + 2i - 3'' - 2i - 3'')	Adds up all 3 roots	M1
	$a = 2, b = -11$ or $x^3 + 2x^2 - 11x - 52$	At least one of $a = 2$ or $b = -11$	A1
		Both $a = 2$ and $b = -11$	A1
			[5]
			6

Q3.

Question	Scheme	Marks	AOs
(a)(i)	2-i	B1	1.2
(ii)	Roots of polynomials with real coefficients occur in conjugate pairs, β and γ form a conjugate pair, α is real so δ must also be real. or Quartics have either 4 real roots, 2 real roots and 2 complex roots or 4 complex roots. As 2 complex roots and 1 real root therefore so δ must also be real. or As α real and only one root δ remaining, if complex it would need to have a complex conjugate, which it can't have so must be real	B1	2.4
		(2)	
(b)	$\alpha + \beta + \gamma + \delta = 6$ $\Rightarrow 3 + 2 + i + 2 - i + \delta = 6 \Rightarrow \delta = \dots$	M1	3.1a
	$\delta = -1$	A1	1.1b
		(2)	
(c)	$f(z) = (z-3)(z+1)(z-(2+i))(z-(2-i)) = \dots$ Alternative pair sum = (3)(2+i)+(3)(2-i)+(3)(-1)+(-1)(2+i) +(-1)(2-i)+(2+i)(2-i) = \dots {10} triple sum = (3)(2+i)(2-i)+(3)(-1)(2+i) +(3)(-1)(2-i)+(-1)(2+i)(2-i) = \dots {-2} product = (3)(2+i)(2-i)(-1) = \dots {-15}	M1	3.1a
	$= (z^{2} - 2z - 3)(z^{2} - 4z + 5)$ = $z^{4} - 6z^{3} + 10z^{2} + 2z - 15$ p = 10, q = 2, r = -15	A1 A1	1.1b 1.1b
		(3)	
(d)	$z = \frac{1}{2}, -\frac{3}{2}$	B1ft	1.1b
	$z = -1 \pm \frac{i}{2}$	B1ft	1.1b
		(2)	
		(9	marks)

Notes
(a)(i)
B1: Correct complex number
(a)(ii)
B1: Correct explanation.
(b)
M1: Uses $2 \pm i$ and 1 together with the sum of roots = ± 6 to find a value for δ
A1: Correct value
(c)
M1: Uses $(z - 3)$ and $(z - \text{their } \delta)$ and their conjugate pair correctly as factors and makes an attempt to expand
Alternatively attempts to find the pair sum, triple sum and product
A1: Establishes at least 2 of the required coefficients correctly
A1: Correct quartic or correct constants (d)
B1ft: For $-\frac{3}{2}$ and $-\frac{\delta}{2}$ as the real roots
B1ft: For $-1 - \frac{i}{2}$ and $-\frac{\gamma}{2}$ as the complex roots

Q4.

Question	Scheme	Marks	AOs
(a)	$z *= a - bi \text{then } zz *= (a + bi)(a - bi) = \dots$	M1	1.1b
	$zz *= a^2 + b^2$ therefore, a real number	A1	2.4
		(2)	
(b)	$\frac{z}{z*} = \frac{a+bi}{a-bi} = \frac{(a+bi)(a+bi)}{(a-bi)(a+bi)} = \frac{(a^2-b^2)+2abi}{a^2+b^2} = \frac{7}{9} + \frac{4\sqrt{2}i}{9} \text{ or } \frac{z}{z*} = \frac{z^2}{zz*} = \frac{z^2}{18} \Rightarrow$ $z^2 = 14 + 8\sqrt{2}i \text{ or } a+bi = \left(\frac{7}{9} + \frac{4\sqrt{2}i}{9}\right)(a-bi) =+i$	M1	1.1b
	Forms two equations from $a^2 + b^2 = 18$ or $\frac{a^2 - b^2}{18} = \frac{7}{9}$ or $\frac{a^2 - b^2}{a^2 + b^2} = \frac{7}{9}$ or $\frac{2ab}{18} = \frac{4\sqrt{2}}{9}$ or $\frac{2ab}{a^2 + b^2} = \frac{4\sqrt{2}}{9}$ or $a = \frac{7}{9}a + \frac{4\sqrt{2}}{9}b$ oe	M1 A1	3.1a 1.1b
	Solves the equations simultaneously e.g. $a^2 + b^2 = 18$ and $a^2 - b^2 = 14$ leading to a value for a or b	dM1	1.1b
	$z = \pm (4 + \sqrt{2}i)$	A1	2.2a
		(5)	
		(7 n	narks)
Notes:			
(a)(i) M1: States A1: Achiev conclusion,	or implies $z *= a - bi$ and finds an expression for $zz *$ es $zz *= a^2 + b^2$ and draws the conclusion that zz *is a real number. Accept but not just "no imaginary part".	∈R as	
(b) M1: Starts without z* of expand and M1: Uses the both It mus	the process of solving by using the conjugate to form an equation with real de or i^2 in the equation. Accept as shown in scheme, or may multiply through by gather terms. May be implied by correct extraction of equation(s). he given information to form two equations involving <i>a</i> and <i>b</i> at least one of v st involve equating real or imaginary parts of $\frac{z}{1} = \frac{7}{1} + \frac{4\sqrt{2}i}{1}$	nominator a — biand which inclu	rs, and l udes
Al: Any tw	To correct equations arising from use of both given facts. (Note: if multiplying aring real and imaginary terms gives the same equation.)	through b	oy a –
dM1: Depe	ndent on previous method mark, solves the equations to find a value for eithe	r a or b.	
A1: Deduce	es the correct complex numbers and no extras. Do not accept $\pm 4 \pm \sqrt{2}i$		
	167 B 177 B		

(b) Alt	$\frac{z}{z^*} = \frac{z^2}{zz^*} = \frac{z^2}{18} \Rightarrow z^2 = 14 + 8\sqrt{2}i \text{ or}$ let arg $z = \theta$. then $\frac{z}{z^*} = \frac{re^{i\theta}}{re^{-i\theta}} = e^{2i\theta} = \cos 2\theta + i\sin 2\theta$	M1	1.16
	$z^{2} = 18(\cos\alpha + i\sin\alpha) \text{ where } \tan\alpha = \frac{4\sqrt{2}}{7} \Rightarrow z = \pm\sqrt{18}\left(\cos\frac{1}{2}\alpha + i\sin\frac{1}{2}\alpha\right) \text{ Or } \cos 2\theta + i\sin2\theta = \frac{7}{9} + \frac{4\sqrt{2}i}{9} \Rightarrow 2\cos^{-2}\theta - 1 = \frac{7}{9}, 2\sin\theta\cos\theta = \frac{4\sqrt{2}}{9}$	M1 A1	1.1b 1.1b
	$\frac{\cos\frac{1}{2}\alpha = \sqrt{\frac{1}{2}(1+\cos\alpha)} = \sqrt{\frac{1}{2}\left(1+\frac{7}{9}\right)} = \dots \text{ and } \sin\frac{1}{2}\alpha = \sqrt{\frac{1}{2}(1-\cos\alpha)} = \sqrt{\frac{1}{2}\left(1-\frac{7}{9}\right)} = \dots \text{ or } \Rightarrow \cos\theta = \frac{2\sqrt{2}}{3}, \sin\theta = \frac{1}{3}, r = z = \sqrt{zz^*} = \sqrt{18}$	dM1	3.1a
	$z = \pm (4 + \sqrt{2}i)$	A1	2.2a
		(5)	

Q5.

Question	Scheme	Marks	AOs
(2)	$\alpha + \beta + (\alpha + \frac{12}{2} - \beta) - 8 \approx 2\alpha + \frac{12}{2} - 8$	M1	1.1b
(a)	$\left(\begin{array}{c} \alpha + \rho + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 5 = 2 \left(\left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 2 \left(\left(\begin{array}{c} \alpha + \alpha \\ \alpha \end{array} \right)^{-5} = 2 \left(\left(\begin{array}{c} \alpha + \alpha \\ \right)^{-5} = 2 \left(\left(\begin{array}{c} \alpha + \alpha \\ \end{array} \right)^{-5} = 2 \left(\left(\begin{array}{c} \alpha + \alpha \\ \end{array} \right)^{-$	A1	1.1b
	$\Rightarrow 2\alpha^2 - 8\alpha + 12 = 0 \text{ or } \alpha^2 - 4\alpha + 6 = 0$ $\Rightarrow \alpha = \frac{4 \pm \sqrt{(-4)^2 - 4(1)(6)}}{2(1)} \text{ or } (\alpha - 2)^2 - 4 + 6 = 0 \Rightarrow \alpha = \dots$	M1	1.1b
	$\Rightarrow \alpha = 2 \pm i\sqrt{2}$ are the two complex roots	A1	1.1b
	A correct full method to find the third root. Common methods are: Sum of roots = 8 \Rightarrow third root = 8 - $(2 + i\sqrt{2}) - (2 - i\sqrt{2}) =$ third root = 2 + $i\sqrt{2} + \frac{12}{2 + i\sqrt{2}} - (2 - i\sqrt{2}) =$ Product of roots = 24 \Rightarrow third root = $\frac{24}{(2 + i\sqrt{2})(2 - i\sqrt{2})} =$ $(z - \alpha)(z - \beta) = z^2 - 4z + 6 \Rightarrow f(z) = (z^2 - 4z + 6)(z - \gamma) \Rightarrow \gamma =$ (or long division to find third factor).	M1	3.1a
	Hence the roots of $f(z) = 0$ are $2 \pm i\sqrt{2}$ and 4	A1	1.1b
2		(6)	
(b)	E.g. $f(4) = 0 \Rightarrow 4^3 - 8 \times 4^2 + 4p - 24 = 0 \Rightarrow p =$ Or $p = (2 + i\sqrt{2})(2 - i\sqrt{2}) + 4(2 + i\sqrt{2}) + 4(2 - i\sqrt{2}) \Rightarrow p =$ Or $f(z) = (z - 4)(z^2 - 4z + 6) \Rightarrow p =$	M1	3.1a
	$\Rightarrow p = 22 \operatorname{cso}$	A1	1.1b
		(2)	
		(8	marks)

C*		Notes
(a)	M1	Equates sum of roots to 8 and obtains an equation in just α .
194,199	A1	Obtains a correct equation in α .
	M1	Forms a three term quadratic equation in α and attempts to solve this equation by either completing the square or using the quadratic formula to give $\alpha = \dots$
	A1	$\alpha = 2 \pm i\sqrt{2}$
	M1	Any correct method for finding the remaining root. There are various routes possible. See scheme for common ones.
		Allow this mark if -24 is used as the product.
	6758	See note below for a less common approach.
-	A1	Third root found with all three roots correct. Note α and β need not be identified.
(b)	M1	Any correct method of finding p . For example, applies the factor theorem, process of finding the pair sum of roots, or uses the roots to form $f(z)$.
	A1	p = 22 by correct solution only. Note: this can be found using only their complex roots from (a) (e.g. by factor theorem)
Note for (e.g. if se	(a) final M cond root	I - it is possible to find the second and third roots using only one initial root forgotten or error leads to only one initial root being found).
Product o	f roots = a	$\alpha\beta\left(\alpha+\frac{12}{\alpha}-\beta\right)=24\Rightarrow\alpha\beta^2-(\alpha^2+12)\beta+24=0$, substitutes in α and attempts
to solve ti total have been used	he quadrat been obta l for the pr	ic in β to achieve remaining roots. The final M can be gained once three roots in ined. (This is unlikely to be seen as part of a correct answer.) Allow if -24 has oduct.

Q6.

Question		Scheme	Marks	AOs
(a)	$\alpha(\frac{5}{2})$	$\left(\alpha + \frac{5}{2} - 1\right) = 15$	M1	1.1b
(")	(α)	(α α 1) το	A1	1.1b
	$\Rightarrow 5\alpha$ $\Rightarrow \alpha =$	$\frac{+\frac{25}{\alpha}-5=15 \Rightarrow \alpha^2-4\alpha+5=0}{\frac{4\pm\sqrt{(-4)^2-4(1)(5)}}{2(1)}} \text{ or } (\alpha-2)^2-4+5=0 \Rightarrow \alpha=$	M1	3.1a
	$\Rightarrow \alpha =$	2±i	A1	1.1b
	Hence	the roots of $f(z) = 0$ are $2 + i$, $2 - i$ and 3	A1	2.2a
			(5)	
(b)	<i>p</i> = -($(2+i)'' + (2-i)'' + (3'') \implies p = \dots$	M1	3.1a
	$\Rightarrow p =$	-7 cso	A1	1.1b
			(2)	
(b)	f(z) =	$(z-3)(z^2-4z+5) \Rightarrow p = \dots$	M1	3.1a
ALT 1	$\Rightarrow p =$	-7 cso	A1	1.1b
			(2)	
		0	(7	marks)
(-)	10	Question Notes	ual to 15 or	_15
(a)		Obtains a correct equation in α		15
	 A1 Obtains a correct equation in α. M1 Forms a quadratic equation in α and attempts to solve this equation by either completing the square or using the quadratic formula to give α = A1 α = 2 ± i A1 Deduces the roots are 2 + i, 2 - i and 3 			ther
(b)	M1	Applies the process of finding $-\sum (of their three roots found$	l in part (a))
	82023	to give $p = \dots$		
	A1	p = -7 by correct solution only.		
(b)	M1	Applies the process expanding $(z - "3")(z - (\text{their sum})z + \text{their sum})z$	heir product)
ALT 1		in order to find $p = \dots$		
	A1	p = -r by correct solution only.		

^	7	
Ы	1	•

Question Number	n Scheme	
2	(a) $z = \frac{4(1-i)}{(1+i)(1-i)}$	M1
	z = 2(1-i) or $2-2i$ or exact equivalent.	A1 (2)
	(b) $z^2 = (2-2i)(2-2i) = 4-8i+4i^2$	M1
	= - 8i	A1 cao
	(c) If z is a root so is z^* So $(x-2+2i)(x-2-2i)$ (or $x^2-2\operatorname{Re}(z).x+ z ^2$)	(2) M1
	So $(x-2+2i)(x-2-2i) = 0$ (or $x^2 - 2\operatorname{Re}(z).x + z ^2 = 0$) and so $p = q =$	M1
	Equation is $x^2 - 4x + 8 (= 0)$ or $p = -4$ and $q = 8$	A1 (3) (7 marks)
ALT 1	(c) Substitutes $z = 2 - 2i$ and $z^2 = -8i$ into quadratic and equates real and imaginary parts to obtain $2p + q = 0$ and $-2p - 8 = 0$ Attempts to solve simultaneous equations to obtain $p = -4$ and $q = 8$	M1 M1A1
ALT 2	(c) Attempts to obtain $p = -$ sum of roots Attempts product of roots to obtain $q =$	M1 M1
	Equation is $x^2 - 4x + 8(= 0)$ or $p = -4$ and $q = 8$	A1
ALT 3	(c) $x - 2 = \pm 2i$ either sign acceptable	M1
	$(x-2)^2 = -4 \Rightarrow x^2 - 4x + 4 = -4$ i.e square and attempt to expand to give 3-term quadratic	M1
	Equation is $x^2 - 4x + 8(= 0)$ or $p = -4$ and $q = 8$	A1

Notes

(a) M1: Multiplies numerator and denominator by 1 - i or by -1 + i A1: cao
(b) M1: Squares their z, or the given z = 4/(1+i), to produce at least 3 terms which can be implied by the correct answer.
A1: -8i or 0-8i only
(c) M1: Uses their z and z* in (x-z)(x-z*)
M1: Multiplies two factors and obtains p = or q =
A1: Both correct required - can be implied by x² - 4x + 8
ALT 1
(c) M1: Substitutes their z and their z² into the quadratic and equates real and imaginary parts to obtain two equations in p and q
M1: Attempts to solve for one unknown to obtain p = or q =
A1: Both correct required - can be implied by x² - 4x + 8(=0)